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Domain Wall Fermions
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• Lattice fermions traditionally break
either flavour or chiral symmetry.

• Domain Wall Fermions preserve
flavour symmetry and have greatly
reduced chiral symmetry breaking.

– at the expense adding a extra,
fifth, dimension.
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• The nearest neighbour derivative in the 5th dimension distinguishes left-
and right- handed fermions
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Domain Wall Fermions

• Define 4d quark fields on the wall

qx = PLΨx,0 + PRΨx,Ls−1

• Couple the two walls with a mass term

mfqq

• For finite Ls chiral symmetry is broken, leading to an additive renormali-
sation of the mass

mf → mf + mres

• mres measures the order of the suppression due to one “trip” through the
bulk.
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Advantages of Domain Wall Fermions

• Both flavour and chiral ( almost ) symmetry preserved at finite lattice
spacing : continuum and chiral limits decoupled.

– ( hopefully ) good scaling.

– simple renormalisation : no mixing with wrong flavour operators and
greatly reduced mixing with wrong chirality operators.

∗ Need to know how small is “small” : Later we will discuss this for
the extraction of BK .

– simple, continuum like, χpt fitting forms.

• Positive determinant for positive mass mf (even at finite Ls) [Furman
and Shamir, 94]

– No conceptual problem with simulating odd numbers of flavours.
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Cost of Domain Wall Fermions....

For DWF to be practical we need Ls ≈ 10 , to give a values of mres that are
“small enough” ( a few MeV or below ).

• In the quenched approximation Domain Wall Fermions we have seen that
the size of the residual chiral symmetry is breaking highly dependent on
how the gauge action is discretised:

– Wilson mres ∼ 3MeV

– Iwasaki (rg-improved) mres ∼ .3MeV

– DBW2 (non-perturbative Iwasaki) mres ∼ .03MeV

for a−1 ≈ 2GeV , and Ls = 16 .

• Previous dynamical work ( Columbia ) was at very large lattice spacing
and needed an impractically large fifth dimension to show good chirality.
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Details

• Here I will report on a preliminary study of Nf = 2 , Dynamical Domain
Wall Fermions

– using improved gauge actions (DBW2)

– on large lattices (163 × 32 )

– at weak coupling ( a−1 ≈ 2GeV )

– using a practical size of the fifth dimension (L2 = 12 ).

• As well as improving the action we have worked hard to implement several
improvements to the standard dynamical algorithms:

1. Improved fermion force term

2. Chronological inverter

3. Multiple gauge-step leapfrog.

that give a factor of ∼ 3 speed-up.
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Run Details

• We are using

– DBW2 gauge action with β = 0.80 (Educated guess + hard work :
aiming for a−1 ≈ 2GeV).

– Bare dynamical masses of mf = 0.02 , 0.03 and 0.04 .

• Lattice are generated using the HMC algorithm. Each trajectory is of
length 0.5 in HMC time split up into 50 leapfrog integration steps for
mass of 0.02 and 0.03 , and 40 integration steps for 0.04 .

• Total number of trajectories collected so far:

– amf = 0.02 - 5361 trajectories (8 months on 200GF)

– amf = 0.03 - 6195 trajectories

– amf = 0.04 - 5605 trajectories

The acceptance is ≈ 78% for mf = 0.02,0.03 and 68% for mf = 0.04 .

• Unless otherwise stated all the following results are based on 94 config-
urations, with each configuration being seperated by 50 trajectories
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PRELIMINARY results follow. Quoted errors are statistical only.
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Residual mass

• Residual chiral symmetry breaking generate “extra” term in WTI.

∆µAa
µ(x) = 2mfJa

5(x) + 2Ja
5q(x)

• We absorb this term into the residual mass , mres

Ja
5q(x) ≈ mresJ

a
5(x)

• Compare pion propagation along boundary to propagation to midpoint.

mres = R(t) =

∑
x〈J5q(x, t)P (0,0)〉∑
x〈P (x, t)P (0,0)〉

This should not be dependent on time seperation of correlators.
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• mdyn =0.02, dynamical point.

• Extract mres by averaging between t = 6 and 16 .
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: dynamical extrapolation

• Dynamical extrapolation gives amres = 0.001383(40)

• ≈ 7% of our smallest dynamical mass, but need to know scale before this
can really be put into context.
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: dynamical extrapolation

• Dynamical extrapolation gives: a−1 = 1.698(44)GeV.

• Residual mass is therefore ≈ 2MeV .

12



−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0.5

0.6

0.7

0.8

0.9

1

a M_N  vs mf a

mf=−mres
mf=0

13



-0.01 0 0.01 0.02 0.03 0.04 0.05
m

f

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
pi

2

data
extrapolated value

physical M
K

2

m
pi

2
: dynamical extrapolation

• Lightest dynamical mass ∼ half the strange quark mass.

• M2
π extrapolates to 0 at mf ≈ −mres (within stat. errors)
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• (Preliminary) NLO in chiral perturbation theory fit.

15



Auto-correlation time; Axial correlator
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• We have run one set of spectrum data, measuring every 10 trajectories
to try and resolve the auto-correlation length.

• The above shows the result for the Axial-Axial , box-point correlator at
timeslice 12.
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Auto-correlation time; plaquette
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• Plaquette has same order of magnitude auto-correlation time, but slightly
smaller.
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Quenched Spectral Flows
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A transfer matrix in the 5th

dimension can be defined
for DWF .

T =
1−HT

1 + HT

HT ≈ γ5DW

Zero eigenvalues of γ5DW

propagate 5th dimension.

1. x-axis is −M5

2. y-axis is eigenvalue
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• Spectral flow shows the existance of a gap.
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Topological Charge Tunneling (Quenched)
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• From the top:
1. Symanzik
2. Iwasaki
3. DBW2



• 1000 heatbath sweeps between configurations, all around a−1 = 2GeV .



Topological Charge Tunneling (Dynamical)
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• Topological charge calculated using the A.P.E. smearing approximation
to cycling [DeGrand et al] and a classically O(a4) improved definition of
the topological charge operator.
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Topological Charge Distribution
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• Distribution of toplogical charge for the different ensembles.
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Pseudo-scalar decay constant

Technique

• Can get fπ two different ways:

1. From the Axial-Axial correlator

f2
π

Z2
A

mπ

2
e−mπt = 〈

∫
d3x Aa

0(x, t)Aa
0(0,0)〉

2. or from the Pseudo-Scalar correlator using the WTI to tell us that at
low energies

∆µAa
µ(x) ≡ 2

(
mf + mres

)
Ja
5(x)

or

−
f2

π

(mf + mres)2

m3
π

8
e−mπt = 〈

∫
d3x Ja

5(x, t)Ja
5(0,0)〉
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• Simple linear fit to pseudo-scalar data gives

fπ ≈ f = 135(5) MeV

(Mρ to set the scale)
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• (PRELIMINARY) NLO in chiral perturbation theory fit

26



PRELIMINARY NLO results (statistical errors only)

fπ ≈ f = 131(5) MeV
fK = 156(5) MeV

fK/fπ = 1.188(18)
fπ/Mρ = 0.170(6)

27



The kaon B parameter BK (CP violation in the SM)

• The ∆S = 2 operators needed to calculate BK is in the class of operators

OΓ = sΓA
i dsΓA

i d

• Where in the continuum the operator relevent for Bk has the spinor
structure

V V + AA ≡ γµ ⊗ γµ + γµγ5 ⊗ γµγ5

• With BK :

BK =
〈K0|OV V +AA|K0〉

8
3
〈K0|Aµ|0〉〈0|Aµ|K0〉

• ( potential ) Problem; in the absence of exact chiral symmetry OV V +AA

can mix with four other operators. It is important to note that these
operators are suppressed by a factor of O(am2

res) .
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BK ...

• The lattice matrix element will consist of the matrix element we want
plus a contribution from the wrong chirality operators:

〈K0|OV V +AA|K0〉latt = Z11〈K0|OV V +AA|K0〉ren +
∑
i≥2

z1i〈K0|Oi|K0〉ren

• First order chiral perturbation theory predicts that

〈K0|OV V +AA|K0〉 ∝ M2
k

and, unfortunately, that

〈K0|OTHEREST|K0〉 ∝ 1

so... as the chiral limit is approached the wrong chirality operators will
dominate .

• We always work at relatively large values of the pseudo-scalar mass
(∼ MK), but still it is important to understand the expected size of
the zi coefficients.
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BK...

• We can characterise the form of the chiral symmetry breaking in DWF
by adding a spurion field , Ω , to the action such that

Ω → URΩU †
L

under an extended SU(3)L⊗SU(3)R transformation which is a symmetry
of the action [Blum et. al , 2002]

– just like a standard mass term (“mass flips chirality”)

ΩqL → UR(ΩqL)
Ω†qR → UL(Ω

†qR)

• with each factor of Ω being O(mres) when evaluated
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BK...

• To analyse the chiral properties of the operators, it is convenient to
explicitely write the operators in left- and right-handed components :

OV V +AA ∝ sLσµdLsLσµdL + sRσµdRsRσµdR

OV V−AA ∝ sLσµdLsRσµdR

OSS−PP ∝ sLdRsRdL

OSS+PP ∝ sLdRsLdR + sRdLsRdL

OTT ∝ sRAµνdLsRAµνdL + sLAµνdRsLAµνdR

• Looking for potential mixing; at each order new order im mres we can flip
one left(right)-handed quark into a right(left)-handed one:

O(1) sLdLsLdL + sRdRsRdR

⇓
O(mres) sRdLsLdL, sLdRsLdL, sLdLsRdL · · ·

sLdRsRdR, sRdLsRdR, sRdRsLdR · · ·
⇓

O(m2
res) sRdRsLdL, sRdLsRdL, sRdLsLdR · · ·

• The basic scale for chiral symmetry breaking mixing is O(m2
res) ; 10−6 in

the current case.
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Preliminary dynamical BK

[see the Lattice 2003 proceedings of Taku Izubuchi ]
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• Bare Bps for all dynam-
ical masses.

• We have calculated the renormalisation factor using both the NPR
method of the Rome-Southampton group and perturbation theory. We
get ′′Z ′′

BK
= 0.93(2) and 0.92(2) respectively.
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Preliminary dynamical BK.....

• Looking at just the fully dynamical points and extrapolating to the phys-
ical kaon point gives BMS

K (2GeV) = 0.503(20) (naive ms).

• We can also, for each dynamical mass, extrapolate to mval = ms/2 , and
this is shown in the table below

mdyn Blat
K BMS

K (2GeV) B̂K

0.02 0.537(11) 0.499(22) 0.692(34)
0.03 0.557(9) 0.518(20) 0.719(32)
0.04 0.568(10) 0.529(21) 0.733(34)
∞ RBC 0.536(6)
∞ CPPACS 0.564(14)

• These numbers, of course, are subject to systematic errors:

1. Finite volume.

2. Auto-correlations (real error bar might be bigger).

3. Plateau

4. ** value of ms/2 ** from NLO fit to m2
ps, msea → 0 gives

ms/2 ≈ 0.023 instead of 0.018: BK ↑.
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Summary

• Wrap up nf = 2 study

• Have begun exploratory nf = 3 study (mf ∼ ms) to investigate residual
chiral symmetry breaking.

• QCDOC: 2+1 flavor DWF simulation
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Spectral flow and the gauge coupling
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• As we move to smaller
beta the “gap” in the
spectral flow quickly
dies.

• nf = 3: smaller β for
the same lattice spac-
ing
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